Upgrade to Radio-Frequency Quadrupole Linac

Upgrade to Radio-Frequency Quadrupole Linac | Flowmetrics

After a successful test of the Radio-Frequency Quadrupole Linac, RFQ, engineers and physicists from Lawrence Berkeley National Laboratory will be upgrading this superconducting linear accelerator. On its first trial run the RFQ accepted nearly 100% of the source beam without failure, a remarkable feat with so many complex control systems.

This upgrade plans to adapt the front end of the accelerator producing high-intensity proton beams for experiments.

The lab’s current RFQ, which sits at the beginning of the laboratory’s accelerator chain, accelerates a negative hydrogen ion beam to 0.75 million electronvolts, or MeV. The new RFQ, which is longer, accelerates a beam to 2.1 MeV, nearly three times the energy. Transported beam current, and therefore power, is the key improvement with the new RFQ. The current RFQ delivers 54-watt beam power; the new RFQ delivers beam at 21 kilowatts – an increase by a factor of nearly 400.

Innovation on the new upgrade hinges on a waveform cut out of positioning vanes within the accelerator. The waveform is designed with longer distances between peaks and troughs as the beam travels along the accelerator. This lengthening accounts for increased speed as the beam accelerates, keep the time between peaks and troughs equal the entire journey through the RFQ.

Click here for the full article on Phys.org.